Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Șamil Ișıs, ${ }^{\text {a }}$ Yavuz Köysal, ${ }^{\text {a }}{ }^{*}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Kantar Cihan ${ }^{\text {b }}$ and Erbil Ağar ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: yavuzk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.049$
$w R$ factor $=0.128$
Data-to-parameter ratio $=19.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(2-Indanoxy)phthalonitrile

In the title molecule, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, the five-membered ring of the indandione moiety adopts an envelope conformation. The dihedral angle between the 2-indanoxy and phthalonitrile groups, excluding the out-of-plane envelope flap atom, is $59.81(5)^{\circ}$.

Comment

4-(2-Indanoxy)phthalonitrile, (I), is a precursor in the synthesis of peripherally tetra-substituted phthalocyanines (McKeown, 1998). Phthalocyanines are one of the major types of tetrapyrrole derivative, showing a wide range of applications in materials science, medicine and catalysis (Leznoff \& Lever, 1989-1996).

(I)

The bonds lengths and angles in the phthalonitrile group are consistent with a previously published structure (Ocak et al., 2003). The five-membered ring of the indanoxy group is in an envelope conformation, with atom C 1 forming the flap (Fig. 1). Atoms C2/C3/C4/C5/C6/C7/C8/C9 are coplanar, with a maximum deviation of -0.018 (2) \AA for atom C9; atom C1 is 0.351 (2) \AA from this plane. The bond lengths and angles in the five-membered ring in the title molecule are in agreement with expected values (Özbey et al., 1995). The angle between the $\mathrm{C} 10-\mathrm{C} 15$ ring and the $\mathrm{C} 2-\mathrm{C} 9$ moiety is $59.81(5)^{\circ}$.

Figure 1
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 1 September 2003
Accepted 8 September 2003
Online 11 September 2003

Experimental

2-Indanol ($1 \mathrm{~g}, 7.75 \mathrm{mmol}$) was dissolved in dry dimethylformamide (30 ml) and 4-nitrophthalonitrile ($1 \mathrm{~g}, 5.78 \mathrm{mmol}$) was added. After stirring for 30 min , finely ground anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~g}, 14.50 \mathrm{mmol})$ was added portionwise over 2 h with vigorous stirring. The reaction mixture was stirred for 24 h at room temperature and then poured into ice-water $(150 \mathrm{~g})$. The product was filtered off and washed with water until the filtrate was neutral. Recrystallization twice from ethanol gave a green product. Yield $0.40 \mathrm{~g}(26.7 \%)$. Single crystals were obtained from absolute ethanol at room temperature via slow evaporation. M.p 403-405 K. Analysis, calcd: C: 78.44; H: 4.65; N: 10.76, found: C: $78.20 ; \mathrm{H}: 4.70 ; \mathrm{N}: 10.70 \%$. IR data $\left(v_{\text {max }}, \mathrm{cm}^{-1}\right): 3080$, 3020 ($\mathrm{Ar}-\mathrm{CH}$), 2920, $2850(\mathrm{C}-\mathrm{H}), 2220(\mathrm{C}-\mathrm{N})$.

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=260.30$
Monoclinic, $P 2_{\mathrm{d}} / a$
$a=8.4711$ (8) A
$b=13.4082(8) \AA$
$c=11.8736$ (11) A
$\beta=99.056(8)^{\circ}$
$V=1331.82(19) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS 2 diffractometer φ scans
Absorption correction: by
integration X-RED32 (Stoe \& $\mathrm{Cie}, 2002$)
$T_{\text {min }}=0.916, T_{\text {max }}=0.992$
3702 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.128$
$S=0.64$
3702 reflections
186 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.298 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12001 reflections
$\theta=1.7-0.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.80 \times 0.43 \times 0.08 \mathrm{~mm}$

> 3702 independent reflections
> 1467 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=29.6^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-18 \rightarrow 18$
> $l=-16 \rightarrow 16$

[^0]Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 10$	$1.358(2)$	$\mathrm{C} 16-\mathrm{N} 1$	$1.137(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.452(2)$	$\mathrm{C} 9-\mathrm{C} 1$	$1.519(2)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.388(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.525(2)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.497(2)$	$\mathrm{C} 17-\mathrm{N} 2$	$1.139(2)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.495(2)$		
$\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 1$	$118.34(13)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$118.65(17)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.53(19)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.00(18)$

Atom H1 was located in a difference Fourier map and refined independently, with isotropic displacement parameters $[\mathrm{C} 1-\mathrm{H} 1=$ $0.961(18) \AA$]. The remaining H atoms were placed in calculated positions, with $\mathrm{C}\left(s p^{2}\right)-\mathrm{H}$ distances of $0.93 \AA$ and $\mathrm{C}\left(s p^{3}\right)-\mathrm{H}$ distances of $0.97 \AA$. They were included in the refinement in the riding-model approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the carrier atom. The intensity data collected for the title structure are generally weak, with only 40% having $I>2 \sigma(I)$ for a maximum θ angle of 29.5°.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C.\& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols $1,2,3 \& 4$. Weinheim \& New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., Garcia Granda, S., Erdönmez, A. (2003), Acta Cryst. E59, o1000-o1001

Özbey, S., Kendi, E., Ide, S., Thomas C. W. Mak., (1995), Acta Cryst. C51, 707709.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0899 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\AA^{-3}}$
 $\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 (Sheldrick, 1997)
 Extinction coefficient: 0.040 (3)

